MATHEMATICS CSEC SUMMARY 2022

Section 1 – Number Theory and Computation
Section 2 – Consumer Arithmetic
Section 3 – Sets
Section 4 – Measurements
Section 5 – Statistics
Section 6 – Algebra
Section 7 – Relations, Functions and Graphs
Section 8 – Geometry and Trigonometry
Section 9 – Vectors and Matrices

Section 1 – Number Theory and Computation

Sets of numbers:

Natural numbers, $N = \{1, 2, 3,\}$ Whole numbers, $W = \{0, 1, 2, 3,\}$ Integers, $Z = \{ ..., -2, -1, 0, 1, 2, ... \}$

Rational numbers, $Q = \{ \frac{p}{q}, p \text{ and } q \text{ are integers, } q \neq 0 \}$

Irrational numbers, $\bar{Q} = \{ , \sqrt{2}, \pi, \}$

Real numbers, $R = Q \cup \bar{Q}$

Significant figures rules:

- 1. All non-zero numbers ARE significant
- 2. Zeros between two non-zero digits ARE significant
- 3. Leading zeros are NOT significant. e.g. 0.0045 has 2 sig. fig.
- 4. Trailing zeros to the right of the decimal ARE significant. e.g. 45.00 has 4 sig. fig.
- 5. Trailing zeros in a whole number with decimal shown ARE significant.
- 6. Trailing zeros in a whole number with no decimal shown are NOT significant.

Properties of numbers:

- e) Additive Identity: x + 0 = 0 + x = x. (f) Multiplicative Identity: $x \cdot 1 = 1$.
- g) Additive Inverse: x + (-x) = (-x) + x = 0 (h) Multiplicative Inverse: $x \cdot (\frac{1}{x}) = (\frac{1}{x})$. x = (-x) + (-x) = (-x)=1

Ratios:

A ratio of a:b:c implies that the fractions being shared are $\frac{a}{a+b+c}:\frac{b}{a+b+c}:\frac{c}{a+b+c}$

Section 2 – Consumer Arithmetic

Discount = Selling Price x discount %	Sales Tax = $\frac{total sale tax}{Selling price} \times 100\%$
Profit = Selling Price – Cost price	Loss = Cost price – Selling price
Profit $\% = \frac{SP - CP}{CP} \times 100 \%$	Simple Interest = $\frac{Principal \times Rate \times time}{100}$
Compound Interest Fo A – final amount in P – principa i – interest ra n – number	cluding principal al amount te per year
The Compound Interest for determine appreciation	

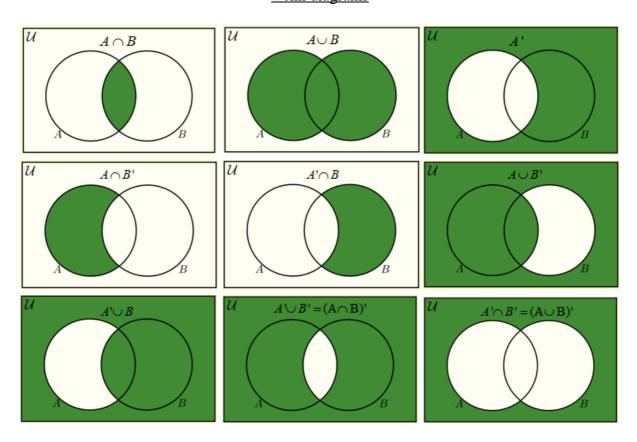
Section 3 – Sets

Set Theory Symbols

Symbol	Name	Example	Explanation
{}	Set	$A = \{1, 3\}$	Collection of objects
		$B = \{2, 3, 9\}$	
		$C = \{3, 9\}$	
\cap	Intersect	$A \cap B = \{3\}$	Belong to both set A and set B
U	Union	$A \cup B = \{1, 2, 3, 9\}$	Belong to set A or set B
_	Proper Subset	{1} ⊂ A	A set that is contained in
		$C \subset B$	another set
⊆	Subset	{1} ⊆ A	A set that is contained in or
		{1,3} ⊆ <i>A</i>	equal to another set
⊄	Not a Proper Subset	{1.3} ⊄ A	A set that is not contained in
			another set
⊃	Superset	$B\supset C$	Set B includes set C
€	Is a member	$3 \in A$	3 is an element in set A
∉	Is not a member	4 ∉ <i>A</i>	4 is not an element in set A

^{*} $n(A \cup B) = n(A) + n(B) - n(A \cap B)$

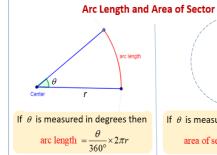
Venn diagrams

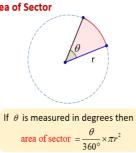


Section 4 – Measurements

Length	Mass
10 mm = 1 cm	1g = 1000mg
100 cm = 1 m	1 kg = 1000 g
1000 mm = 1 m	1 kg = 2.21 bs
1000 m = 1 km	11b = 16 ounces

1		
Shape	Volume Formula	Surface Area Formula
Cube	<i>s</i> ³	6s²
	where $s = length$ of the side	where $s = length$ of the side
Cuboid	lwh	2(lw + lh + wh)
	where $l = length$, $w = width$, $h =$	where $l = length$, $w =$
	height	width, $h = \text{height}$
Prism	area of base × height	2 × area of base + perimeter of
		base × height
Cylinder	$\pi r^2 h$	$2\pi r (r+h)$
	where $r = \text{radius}$, $h = \text{height}$	where $r = \text{radius}$, $h = \text{height}$
Hollow	$\pi h(R^2-r^2)$	$2\pi rh + 2\pi Rh + 2(\pi R^2 - \pi r^2)$
Cylinder	where $R = \text{radius of the outer}$	where $R = \text{radius of the outer}$
	surface, $r = \text{radius of the inner}$	surface, $r = \text{radius of the inner}$
	surface	surface
Cone	$\frac{1}{3}\pi r^2 h$	$\pi r (r + s)$
	$\frac{1}{3}$ n	where $r = \text{radius}$, $s = \text{slant}$
	where $r = \text{radius}$, $h = \text{height}$	height
Pyramid	1 _,	Any pyramid = area of base +
	$\frac{1}{3}Bh$	area of each of the lateral faces
	_	Regular pyramid = area of
	where $B = area$ of base, $h = height$	base + $\frac{1}{2} ps$
		where $p = perimeter of the$
		base, $s = slant height$
		Square pyramid = $b^2 + 2bs$
		where $b = length$ of the
		base, $s = \text{slant height}$
Sphere	43	4πr ²
	$\frac{4}{3}\pi r^3$	where $r = \text{radius}$
	where $r = \text{radius}$	
Hemisphere	2 3	3πr ²
	$\frac{2}{3}\pi r^3$	where $r = \text{radius}$
1		





Speed =
$$\frac{distnace}{time}$$
Units: ms⁻¹ or kmh⁻¹
Distance = speed x time
$$Time = \frac{distance}{speed}$$

Section 5 – Statistics

Basic definitions

o Population: The entire group being investigated

Sample: A subset of the population
 Discrete data: Specific values only
 Continuous data: Range of values
 Raw data: Unordered info

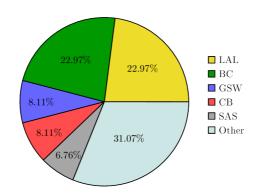
o Median: Middle value from a set of ordered values

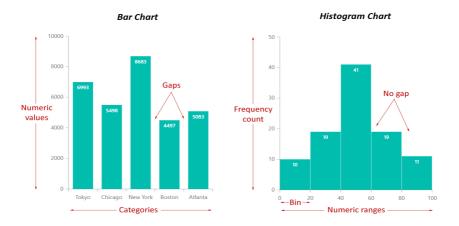
o Mode: Most frequent value

o Probability: Chances of an event occurring

O Standard deviation: Gives a spread of the data. (how far away from mean)

Types of statistical charts:





To plot histograms, we need the class boundaries as shown below:

Class Limits	Class boundaries	Tally	Frequency
318 - 335	317.5 - 335.5	1111	4
336 - 353	335.5 - 353.5	THI	5
354 - 371	353.5 - 371.5	11	2
372 - 389	371.5 - 389.5	111	3
390 - 407	389.5 - 407.5	111	3
408 - 425	407.5 - 425.5	11	2
426 - 443	425.5 - 443.5	1	1

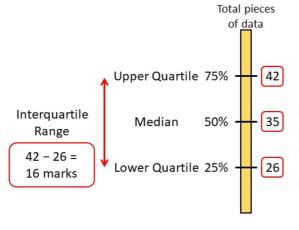
To construct a cumulative frequency graph and read off the Quartiles we do the following:

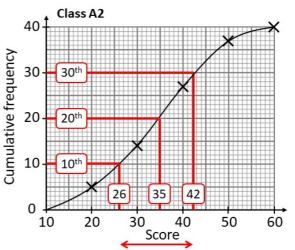
A cumulative frequency graph allows us to measure the spread of data.

By finding the value at each quartile (quarter) of the data, we can find the median and the spread of the middle 50%.

This measure eliminates extreme values.

Score	Students (Frequency)	Cumulative Frequency
11-20	5	5
21-30	9	14
31-40	13	27
41-50	10	37
51-60	3	40





Quartiles:

Lower Quartile,
$$Q_1 = \frac{1}{4} (n+1)^{th}$$
 term

Median,
$$Q_2 = \frac{1}{2} (n+1)^{th}$$
 term

Upper Quartile,
$$Q_3 = \frac{3}{4} (n+1)^{th}$$
 term

Inter Quartile Range =
$$Q_3 - Q_1$$

Semi-Inter Quartile Range =
$$\frac{Q_3 - Q}{2}$$

Section 6 – Algebra

Basic Algebra rules:

i.
$$x + x = 2x$$

ii.
$$x-2x = x (1-2) = -x$$

iii.
$$x + y = x + y$$

Indices Rules

i.
$$x^m \cdot x^n = x^{m+n}$$

ii.
$$x^m \div x^n = x^{m-n}$$

iii.
$$x^0 = 1$$

iv.
$$(x^m)^n = x^{mn}$$

$$V. \qquad X^{-m} = \frac{1}{x^m}$$

Simplifying:

When simplifying fractions:

$$\frac{a}{b} \pm \frac{c}{d} = \frac{ad \pm cb}{bd}$$

Expanding brackets:

$$(a + b)(a + b) = a^2 + 2ab + b^2$$

Factorizing:

1.
$$ab + ca = a (b + c)$$

2.
$$x^2y + y^2 x = xy (x + y)$$

3.
$$px^2 + qx + apx + aq = x(px + q) + a(px + q)$$

= $(px + q)(x + a)$

4.
$$a^2 - b^2 = (a - b)(a + b)$$

Sign rules

$$- x + = -$$

$$+ x - = -$$

$$+ x + = +$$

NB.

An <u>expression</u> as no equal sign [=], but an equation has an equal sign

To factorize a quadratic:

$$ax^2 + bx + c$$

- 1. Obtain a, b and c
- 2. Get two numbers that when multiplied give ac and when added gives b
- 3. Replace b with those two numbers then factorize

Solving:

- 1. $\frac{a}{b} = \frac{c}{a}$ cross multiply to obtain ad = bc then solve for unknown.
- 2. When solving simultaneously use elimination, if 2 linear equations, or substitution method, if a linear and a quadratic.
- 3. Direct variation : a α b

Inverse variation : a
$$\alpha = \frac{1}{b}$$

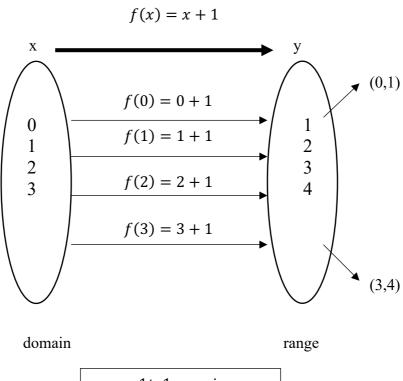
a = $\frac{k}{b}$

$$a = kb$$

$$a = \frac{k}{h}$$

Section 7 – Relations, Functions and Graphs

Functions



 $\therefore 1 to 1 mapping$

Eg
If
$$f(x) = \frac{3x-1}{2}$$

$$f(1) = \frac{3(1)-1}{2} = \frac{2}{2} = 1$$

$$f(2) = \frac{3(2)-1}{2} = \frac{6-1}{2} = \frac{5}{2}$$
replace x with 3x
$$f(3x) = \frac{3(3x)-1}{2} = \frac{9x-1}{2}$$

$$f(2x+1) = \frac{3(2x+1)-1}{2}$$

$$= \frac{6x+3-1}{2} = \frac{6x+2}{2}$$

$$= 3x+1$$

Composite Functions

functions of functions, substitute one function into the next

eg
$$f(x) = 2x - 1, g(x) = \frac{x}{4}$$

$$f(s(x)) = f\left(\frac{x}{4}\right)$$

$$= 2\left(\frac{x}{4}\right) - 1$$

$$= \frac{x}{2} - 1$$

$$g(f(x)) = g(2x - 1) = \frac{2x - 1}{4}$$

$$f^{2}(x) = f(f(x))$$

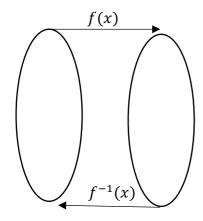
$$f(2x-1)$$

$$= 2(2x-1) - 1$$

$$= 4x - 2 - 1$$

$$= 4x - 3$$

Inverse of a function



Steps

- 1) let y = f(x)
- 2) interchange x and y
- 3) Solve for y
- 4) $y = f^{-1}(x)$

$$e.g f(x) = 2x - 1$$

$$lety = 2x - 1$$

$$interchange x and y$$

$$x = 2y - 1$$

$$Solve for y$$

$$2y - 1 = x$$

$$2y = x + 1$$

$$y = \frac{x + 1}{2}$$

$$f^{-1}(x) = \frac{x + 1}{2}$$

Co-ordinate Geometry:

Distance between two points: $\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}$

Mid-point: $(\frac{x_2+x_1}{2}, \frac{y_2+y_1}{2})$

Gradient: $m = \frac{y_2 - y_1}{x_2 - x_1}$ $\frac{parallel \ lines \ have \ equal \ gradients \ [m_1 = m_2]}{perpendicular \ lines, product \ of \ gradients \ equal -1. \ [m_1 m_2 = -1]}$

Equation of a line:

$$y = mx + c$$
 $m - gradient$
 $c - y$ -intercept (cuts the y-axis)

To find the equation of a line:

- find gradient of line
- obtain a point on the line
- substitute in c = y mx

NB.

- Solving equations simultaneously gives the points of intersection of the equations.

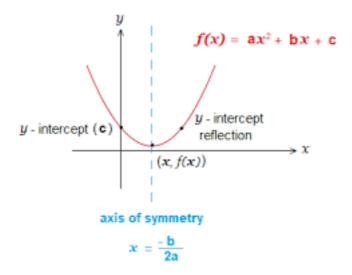
Quadratic:

General form:
$$y = ax^2 + bx + c$$
 [highest power of x is 2]

To complete the square:
$$y = a(x + h)^2 + k$$
. where $h = \frac{b}{2a}$ and $k = c - ah^2$

To sketch a quadratic:

- Shape: minimum, a > 0 Maximum, a < 0
- Turning point : (h, k)
- Maximum or minimum value is always k.
- X-value which gives max or minimum value is -h.
- X-intercepts: solve $ax^2 + bx + c = 0$
- Y-intercept: (0,c)



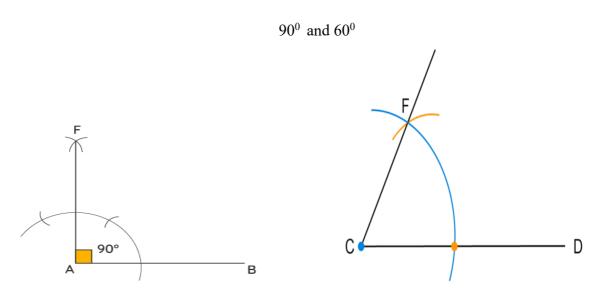
Inequalities:

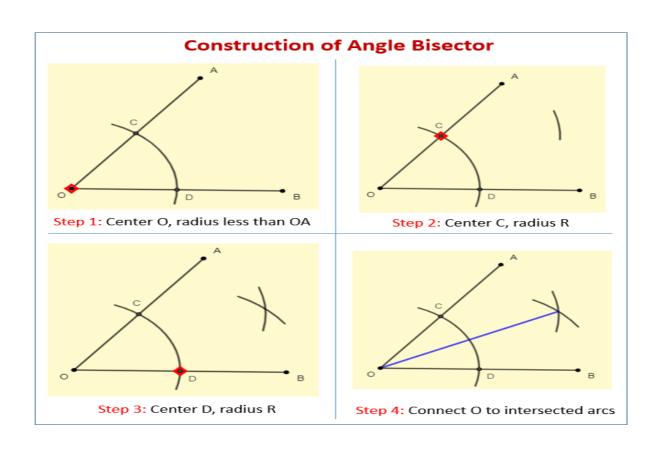
- Solve inequalities like equations, but
- Change the inequality sign when ÷ by a negative
- For \leq or \leq : shade below the line
- For > or \ge : shade above the line

- < less than / fewer than
- > greater than / more than
- \leq at most / no more than
- ≥ at least / no less than

Section 8 – Geometry and Trigonometry

Construction

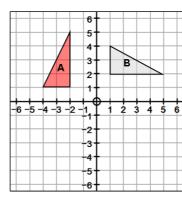




Transformations:

Describing Rotations State...

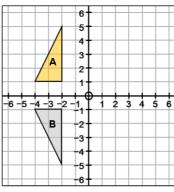
- 1. The centre of rotation
- 2. The angle of rotation
- 3. The direction of rotation



- Centre of rotation is (0,0)
- Angle of rotation is 90°
- Direction of rotation is clockwise

Describing Reflections State...

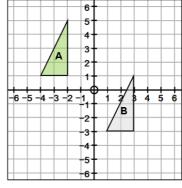
1. The line of symmetry



 The line of symmetry is the X axis

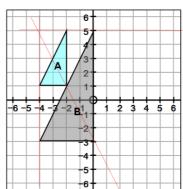
Describing Translations State...

- 1. Movement left or right
- 2. Movement up or down
- Or write the column vector



• Translation of 5 to the right and 4 down

- Describing Enlargements
 State...
- 1. Centre of enlargement
- 2. Scale Factor

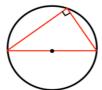


• The centre of enlargement is

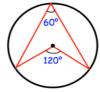
(-4, 5)

• The scale factor is 2

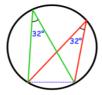
Circle Theorems



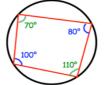
The angle in a semi-circle is 90°



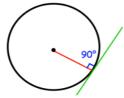
The angle at the circumference is half the angle at the centre



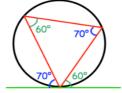
The angles in the same segment from a common chord are equal



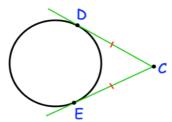
The opposite angles in a cyclic quadrilateral always add to 180°



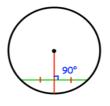
The angle between a radius and a tangent is 90°



Alternate segment theorem
The angle between the chord and the tangent is equal to opposite angle inside the triangle.

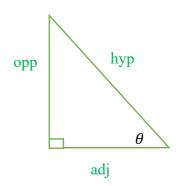


The tangents to a circle from the same point will be equal length



The radius through the midpoint of a chord will bisect the chord at 90°

Trigonometry



Right – angled

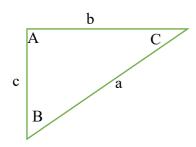
$$hyp^{2} = opp^{2} + adj^{2}$$

$$\sin \theta = \frac{0}{4}$$

$$\cos \theta = \frac{A}{4}$$

$$\tan \theta = \frac{0}{A}$$

$$Area = \frac{1}{2} b \times h$$



Cosine rule: more lengths than angles

$$a^2 = b^2 + c^2 - 2bc \cos A$$

Sine rule: more angles than lengths

$$\frac{a}{\sin A} = \frac{b}{\sin B}$$

$$Area = \frac{1}{2}ab \sin C$$

Bearings

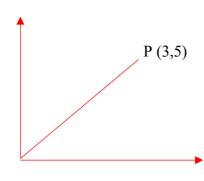
- 1) Start N
- 2) Move in a clockwise direction
- 3) Show all angles

eg. B is on a bearing of 70° from A

C is due south of B

Section 9 – Vectors and Matrices

Vectors:



magnitude of OP $|OP| = \sqrt{3^2 + 5^2}$

Position vector, $\overrightarrow{OP} = \begin{pmatrix} 2 \\ 5 \end{pmatrix}$ $\overrightarrow{PO} = -\begin{pmatrix} 3 \\ 5 \end{pmatrix} = \begin{pmatrix} -3 \\ -5 \end{pmatrix}$

$$\overrightarrow{PO} = -\binom{3}{5} = \binom{-3}{-5}$$

$$\binom{2}{-3} - \binom{4}{1} = \binom{2-4}{-3-1} = \binom{-2}{-4}$$

Multiplying Vectors

a) By a scalar

If
$$\overrightarrow{OP} = \begin{pmatrix} 3 \\ 1 \end{pmatrix}$$

$$2 \overrightarrow{OP} = 2 \binom{3}{1} = \binom{6}{2}$$

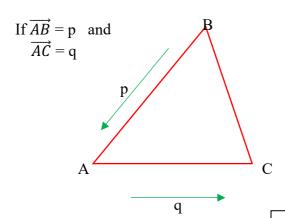
b) Two vectors

If we have two vectors $\vec{P} = \begin{pmatrix} a \\ b \end{pmatrix}$ and $\vec{Q} = \begin{pmatrix} c \\ d \end{pmatrix}$ then

$$P.Q = ad + bc$$

is called dot or scalar product

Displacement Vectors

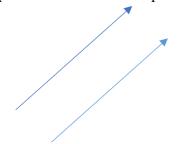


$$\overrightarrow{BC} = \overrightarrow{BA} + \overrightarrow{AC} = -p + q$$
 alternate route from B to C

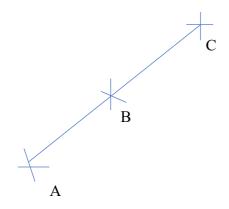
$$\overrightarrow{AC} = \overrightarrow{AB} + \overrightarrow{BC}$$

$$\overrightarrow{AB} = \overrightarrow{AC} + \overrightarrow{CB}$$

parallel vector are multiples of each other a=kb



Collinear



To show collinear

1) show

 $\overrightarrow{AB} \parallel \overrightarrow{BC}$

2) Show

 $\overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}$

Matrices

A matrix is a set of elements in rows or columns.

Eg.
$$A = \begin{pmatrix} 2 & 1 \\ 3 & 2 \\ \downarrow & \downarrow & \sigma \end{pmatrix}$$
 $\xrightarrow{\text{row 1}}$

Name or size= no. of rows × no. of columns

Give the size:

1)
$$\binom{2}{1}$$
 Column Matrix 3×1

2)
$$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
 Square Matrix 2×2 NB. Identity Matrix

4)
$$\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$
 Null Matrix

Addition and Subtraction

If we have:

$$A = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$$
 , $B = \begin{pmatrix} 3 \\ -1 \end{pmatrix}$, $C = \begin{pmatrix} 4 \\ 3 \end{pmatrix}$

To add or subtract:

- 1) Matrices must be the same size.
- 2) Add or subtract the element in the same position.

Eg. 1)
$$A + B = {1 \choose 2}_{2 \times 1} + (3 -1)_{1 \times 2}$$

∴ not same size

We <u>cannot</u> add

2)
$$A + C = \begin{pmatrix} 1 \\ 2 \end{pmatrix} + \begin{pmatrix} 4 \\ 3 \end{pmatrix} = \begin{pmatrix} 1 & + & 4 \\ 2 & + & 3 \end{pmatrix} = \begin{pmatrix} 5 \\ 5 \end{pmatrix}$$

Multiplication

(a) By a scalar

If we have $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$

Then
$$KA = k \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

$$= \begin{pmatrix} ka & kb \\ kc & kd \end{pmatrix}$$

Eg. If
$$A = \begin{pmatrix} 2 & -3 \\ 4 & 5 \end{pmatrix}$$
 then

(a)
$$2A = 2 \begin{pmatrix} 2 & -3 \\ 4 & 5 \end{pmatrix} = \begin{pmatrix} 4 & -6 \\ 8 & 10 \end{pmatrix}$$

(b)
$$3A = 3 \begin{pmatrix} 2 & -3 \\ 4 & 5 \end{pmatrix} = \begin{pmatrix} 6 & -9 \\ 12 & 15 \end{pmatrix}$$

(c) Two Matrices

To multiply two matrices

- (1) No. of columns in first matrix = no. of rows in second matrix ie. $a \times b \times c$
- (2) Product is no. of rows in matrix one by no. of columns in matrix two.

ie.
$$a \times b$$
 . $b \times c$.

$$Product = a \times c$$

(3) Always rows in matrix one \times (by) columns in matrix 2.

$$(1) \text{ If } A = \begin{pmatrix} 2 & -1 \\ 3 & 2 \end{pmatrix} \text{ and } B = \begin{pmatrix} 0 & 1 \\ 3 & -1 \end{pmatrix}$$

$$2 \times 2 = 2 \times 2$$

$$AB = \begin{pmatrix} 2 & -1 \\ 3 & 2 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 3 & -1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ -1 & 2 \end{pmatrix}$$

$$= \begin{pmatrix} (2 \times 10) + (-1)(3) & (2)(1) + (-1)(-1) \\ (3 \times 0) + (2 \times 3) & (3)(1) + (2)(-1) \end{pmatrix}$$

$$= \begin{pmatrix} -3 & 3 \\ 6 & 1 \end{pmatrix}$$

$$BA = \begin{pmatrix} 0 & 1 \\ 3 & -1 \end{pmatrix} \begin{pmatrix} 2 & -1 \\ 3 & 2 \end{pmatrix}$$

$$= \begin{pmatrix} (0 \times 2) + (1 \times 3) & (0 \times -1) + (1 \times 2) \\ (3 \times 2) + (-1 \times 3) & (3 \times -1) + (2 \times -1) \end{pmatrix}$$

$$= \begin{pmatrix} 3 & 2 \\ 3 & -5 \end{pmatrix}$$

Determinant

If
$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
 then the determinant, det A or $|A|$

$$|A| = ad - bc$$

Example
$$A = \begin{pmatrix} 2 & -1 \\ 3 & 4 \end{pmatrix}$$

$$|A| = (2)(4) - (-1)(3)$$

$$= 8 + 3 = 11$$

$$A = \begin{pmatrix} 2 & 4 \\ -1 & -3 \end{pmatrix}$$

$$|A| = (2)(-3) - (4)(-1)$$

$$= -6 + 4$$

$$= -2$$

$$B = \begin{pmatrix} 1 & 2 \\ 2 & 4 \end{pmatrix}$$

$$|B| = (1)(4) - (2)(2)$$

$$= 4 - 4$$

$$= 0$$

If det in \neq 0 then matrix is said to be non-singular. If det = 0, then the matrix is Singular.

If
$$A = \begin{pmatrix} 2 & P \\ 3 & 1 \end{pmatrix}$$
 in a

Singular matrix, Find p

Since matrix is singular
$$|A| = 0 = (2)(1) - p(3)$$

$$0 = 2 - 3p$$

$$p = \frac{-2}{-3}$$

$$p = \frac{2}{3}$$

If $A = \begin{pmatrix} 2 & 3 \\ n & 4 \end{pmatrix}$ is a singular matrix, Find p.

Det
$$A = 0 = (2)(4) - (3)(p)$$

 $0 = 8 - 3p$
 $3p = 8$
 $p = \frac{8}{3}$

<u>Inverse of a matrix</u>

If $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ then its inverse, A^{-1} is $A^{-1} = \frac{1}{|A|} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$

NB. A must be non-singular

Example. If
$$A = \begin{pmatrix} 2 & -3 \\ 1 & 3 \end{pmatrix}$$
, then det $A = (2)(3) - (-3)(1) = 6 + 3 = 9$

$$\therefore A^{-1} = \frac{1}{9} \begin{pmatrix} 3 & 3 \\ -1 & 2 \end{pmatrix} = \begin{pmatrix} \frac{3}{9} & \frac{3}{9} \\ -\frac{1}{9} & \frac{2}{9} \end{pmatrix}$$

$$A = \begin{pmatrix} 2 & -4 \\ 1 & -3 \end{pmatrix}$$

$$Det A = -6 - (-4)$$

$$= -6 + 4$$

$$= -2$$

$$A^{-1} = \frac{1}{-2} \begin{pmatrix} -3 & 4 \\ -1 & 2 \end{pmatrix}$$

$$A = \begin{pmatrix} 2 & -4 \\ 1 & -3 \end{pmatrix}$$
Det $A = -6 - (-4)$

$$= -6 + 4$$

$$= -2$$

$$B = \begin{pmatrix} 2 & 6 \\ 1 & 3 \end{pmatrix}$$

$$|B| = (2)(3) - (6)(1)$$

$$= 6 - 6$$

$$= 0$$

∴ no inverse

$$\frac{1}{0} = \infty$$

Solving Simultaneous

Matrix Method

$$2x + y = 3$$

$$3x = 2y = 1$$

Write in matrix form

$$\begin{pmatrix} 2 & 1 \\ 3 & -2 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 3 \\ 1 \end{pmatrix}$$

$$Ax = b$$

Where

A, x and b are matrices.

$$= \frac{1}{-7} \begin{pmatrix} -2 & -1 \\ -3 & 2 \end{pmatrix} \begin{pmatrix} 3 \\ 1 \end{pmatrix}$$

$$= \frac{1}{-7} \begin{pmatrix} -6 & + & (-1) \\ -9 & + & 2 \end{pmatrix}$$

$$= \frac{1}{-7} \begin{pmatrix} -7 \\ -7 \end{pmatrix}$$

$$= \begin{pmatrix} \frac{-7}{-7} \\ \frac{-7}{-7} \end{pmatrix}$$

$$\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

Ax = b

(1) Matrix form

(2)
$$A^{-1}$$

$$(3) \binom{x}{y} = A^{-1} \cdot b$$

So
$$x = A^{-1}.b$$

$$A = \begin{pmatrix} 2 & 1 \\ 3 & -2 \end{pmatrix}$$
$$A^{-1} = \frac{1}{-7} \begin{pmatrix} -2 & -1 \\ -3 & 2 \end{pmatrix}$$

Since

$$x = A^{-1} \cdot h$$

$$x = A^{-1} \cdot b$$

$$= \frac{1}{-7} \begin{pmatrix} -2 & -1 \\ -3 & 2 \end{pmatrix} \cdot \begin{pmatrix} 3 \\ 1 \end{pmatrix}$$