Additional Mathematics Summary

Section 1: Algebra, Sequences and Series

- A. Algebra
- **B. Quadratics**
- **C.** Inequalities
- D. Surds, Indices and Logarithms
- E. Series and Sequences

Section 2: Coordinate Geometry, Vectors and Trigonometry

- A. Coordinate Geometry
- **B. Vectors**
- C. Trigonometry

Section 3: Introductory Calculus

- A. Differentiation
- **B.** Integration

Section 4: Probability and Statistics

- A. Data representation and Analysis
- **B.** Probability Theory

Section 1: Algebra, Sequences and Series

A. Algebra

Remainder theorem : If $f(x)$ is divided by $(ax+b)$ then the remainder is $f(\frac{-b}{a})$. Factor Theorem : If $f(x)$ is divided by $(ax+b)$ and the remainder is 0, then $(ax+b)$ is a factor			
long division:			
Theorem:			
Theorem:			
To solve or factorise a cubic:			
a) Use trial and error to obtain first factor.2. Divide function by first factor.			
3. Solve or factorize the quadratic obtained.			

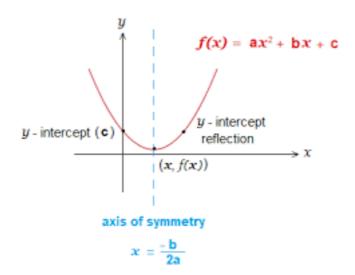
B. Quadratics

General form: $y = ax^2 + bx + c$ [highest power of x is 2]

To complete the square: $y = a(x + h)^2 + k$. where $h = \frac{b}{2a}$ and $k = c - ah^2$

To sketch a quadratic:

- Shape: minimum, a > 0 Maximum, a < 0
- Turning point : (h, k)
- Maximum or minimum value is always k.
- X-value which gives max or minimum value is -h.
- X-intercepts: solve $ax^2 + bx + c = 0$
- Y-intercept: (0,c)



To determine the **nature of the roots** use the discriminant, $D = b^2 - 4ac$:

- If $b^2 4ac > o$ then you have 2 real and distinct roots.
- If $b^2 4ac = 0$ then you have real and equal roots, i.e. one root.
- If $b^2 4ac < 0$ then you no real roots.

Some equations can be **reduced to a quadratic** then solved by using an appropriate substitution.

e.g.
$$x^4 - 2x^2 + 5 = 0$$
 can be reduced to $p^2 - 2p + 5 = 0$, if we let $p = x^2$ and $p^2 = x^4$.

3

If α and β are the roots of $ax^2 + bx + c = 0$ then:

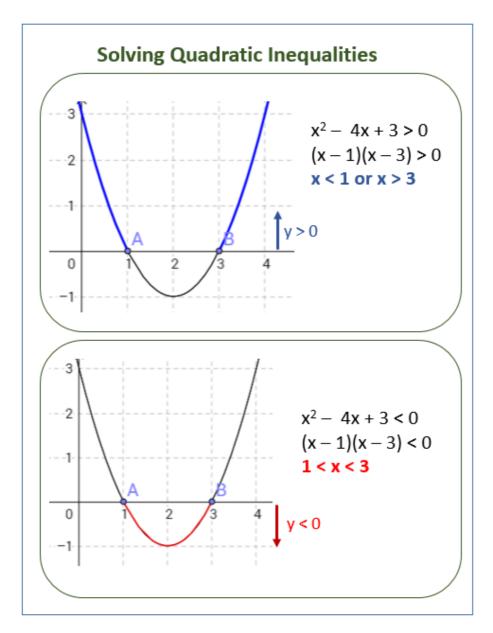
$$\alpha + \beta = \frac{-b}{a} \qquad \alpha \beta = \frac{c}{a} \qquad \alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta$$
$$\frac{\alpha}{\beta} + \frac{\beta}{\alpha} = \frac{\alpha^2 + \beta^2}{\alpha\beta}$$

C. Inequalities

To solve quadratic inequalities:

- 1. Solve quadratic to obtain critical values, α and β .
- 2. Solution for f(x) > 0: $x < \alpha \cup x > \beta$
- 3. Solution for f(x) < 0: $\alpha < x < \beta$

NB. For the above rules to work the quadratic must be a minimum.



For rational inequalities of the form $\frac{ax+b}{cx+d} > k$, multiply both sides by denominator squared, then simplify and solve.

$$\frac{ax+b}{cx+d} \times (cx+d)^2 > k \times (cx+d)^2$$

D. Surds, Indices and Logarithms

•
$$a^0 = 1$$

$$\bullet \, \frac{1}{a^m} = \mathsf{a}^{-\mathsf{m}}$$

$$\bullet \sqrt[n]{a^m} = a^{\frac{m}{n}}$$

$$\int$$
 • $\sqrt{a} \times \sqrt{a} = a$

• $\frac{a}{\sqrt{a}} = \sqrt{a}$

• rationalise:

$$\bullet \frac{a + \sqrt{b}}{c + \sqrt{d}} \times \frac{c - \sqrt{d}}{c - \sqrt{d}}$$

$$\bullet (c + \sqrt{d}) (c - \sqrt{d})$$

$$= c^2 - (\sqrt{d})^{2}$$

$$= c^2 - d$$

• exp. to logs. • $a^c = b \leftrightarrow log_a b = c$

•
$$log_a a = 1$$

•
$$log_a 1 = 0$$

•
$$log_a m^n = nlog_a m$$

$$\bullet log_a$$
 m + log_a n= log_amn

$$\bullet \log_a \mathsf{m} - \log_a \mathsf{n} = \log_a \frac{m}{n}$$

Linear reduction: logarithms can be used to linearize equations, ie convert to form y = mx+c.

Example: 1. $y = ab^x$ can be transformed to $\lg y = x \lg b + \lg a$: Y = lg y, X = x, m = lgb, c = lg a

> 2. $y = ax^b$ can be transformed to lg y = b lg x + lg a: $Y = \lg y$, $X = \lg x$, m = b, $c = \lg a$

NB. - Y and X must never contain the unknown constants

E. Series and Sequences

Summation notation:
$$\sum_{r=1}^{5} (2r+1) = (2(1)+1)+(2(2)+1)+(2(3)+1)+(2(4)+1)$$

= 3+5+7+9
= 24

Rules of Summation:

•
$$\sum ka_n = k \sum a_n$$

•
$$\sum (a_n \pm b_n) = \sum a_n \pm \sum b_n$$

	AP	GP	
Parameters	a – first term d – common difference	a – first term r – common ratio	
Sequence	a, a + d, a + 2d, a + 3d,	a, ar, ar ² , ar ³ , ar ⁴ ,	
General Term	$T_n = a + (n-1)d$	$T_n = ar^{n-1}$	
Sum of the first n terms	$S_{n} = \frac{n}{2} [2a + (n-1)d]$ $S_{n} = \frac{n}{2} [a+l] \qquad l-last$ term	$S_n = \frac{a(1-r^n)}{1-r}$, $r < 1$ $S_n = \frac{a(r^n-1)}{r-1}$, $r > 1$	
Convergent or Divergent	Divergent Convergent iff: -1 < r < 1		
Sum to Infinity	Does not exist	$S_{\infty} = \frac{a}{1 - r}$	

Section 2: Coordinate Geometry, Vectors and Trigonometry A. Coordinate Geometry

Distance between two points:
$$\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}$$

Mid-point:
$$(\frac{x_2+x_1}{2}, \frac{y_2+y_1}{2})$$

Gradient:
$$m = \frac{y_2 - y_1}{x_2 - x_1}$$
 $\frac{parallel \ lines \ have \ equal \ gradients \ [m_1 = m_2]}{perpendicular \ lines, product \ of \ gradients \ equal -1. \ [m_1 m_2 = -1]}$

Equation of a line:
$$y = mx + c$$
 $m - gradient$ $c - y$ -intercept (cuts the y-axis)

To find the equation of a line:

- find gradient of line
- obtain a point on the line
- substitute in $y y_1 = m(x x_1)$

NB.

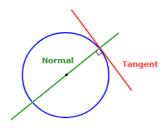
- Solving equations simultaneously gives the points of intersection of the equations.
- If a line is a tangent to a curve, then when solved simultaneously, only 1 solution is obtained.

Equation of a circle:

General form:
$$(x + f)^2 + (y + g)^2 = r^2$$
 centre = (-f, -g); radius = r

Or

 $x^2 + y^2 + 2fx + 2gy + c = 0$ centre = (-f, -g); radius = $\sqrt{f^2 + g^2 - c}$



To determine the equation of tangent at a point P(x, y) on a circle:

- Find the gradient of the radius using the centre and point P
- Find the gradient of the tangent using $\frac{-1}{gradient\ of\ radius}$
- Substitute gradient and point P in $y y_1 = m(x x_1)$

NB - To determine the equation of the normal at a point P(x, y) on a circle, use the same steps as above, except that gradient of radius = gradient of normal.

B. Vectors

General form: For a point P (x, y), its position vector can be written as: $\overline{OP} = \begin{pmatrix} x \\ y \end{pmatrix} = xi + yj$ $\overline{P0} = \begin{pmatrix} -x \\ -y \end{pmatrix}$

Equal vectors: If two vectors are equal:

$$ai + bj = ci + dj$$

then $a = c$ and $b = d$.

To add or subtract vectors: $\binom{a}{b} \pm \binom{c}{d} = \binom{a \pm c}{b \pm d}$

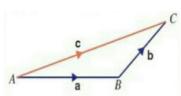
Multiply by a scalar: $k \binom{a}{b} = \binom{ka}{kb}$

Multiplying two vectors: $\binom{a}{b}\binom{c}{d} = ac + bd$ This is also known as scalar product.

Magnitude of a vector: If we have a vector xi + yj then its magnitude is given by $\sqrt{x^2 + y^2}$

Unit vector: A unit vector has a magnitude of one and is obtained by: $\frac{\bar{A}}{\|A\|}$

Displacement Vectors:



In the vector diagram above, the triangle can be used to determine unknown vectors by finding an alternative path along the triangle.

$$\overrightarrow{AC} = \overrightarrow{AB} + \overrightarrow{BC}$$

$$\overrightarrow{AB} = \overrightarrow{AC} + \overrightarrow{CB}$$

$$\overrightarrow{BC} = \overrightarrow{BA} + \overrightarrow{AC}$$

8

Angle Between Two Vectors: The angle between two vectors \bar{a} and \bar{b} is given by

$$\cos\theta = \frac{a.b}{\|a\|\|b\|}$$

If two vectors \bar{a} and \bar{b} are parallel, then they are scalar multiples of each other. If two vectors \bar{a} and \bar{b} are perpendicular, then a.b=0.

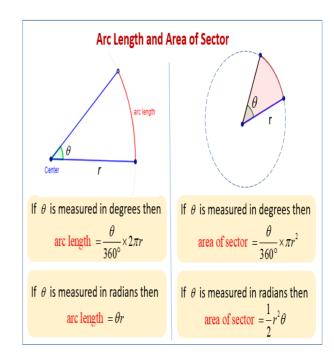
C. Trigonometry

Radians, Arcs, and sectors

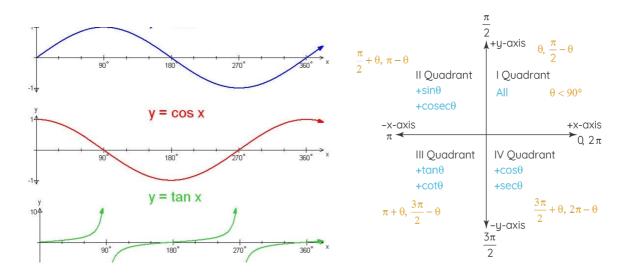
Radians/Degrees Conversions

These are worth actually LEARNING

Angle in degrees	Angle in radians
180	π
30	$\frac{\pi}{6}$
45	$\frac{\pi}{4}$
60	$\frac{\pi}{3}$
90	$\frac{\pi}{2}$
360	2π
Approximately 57.3	ı



Trig. Graphs



$$Tan \theta = \frac{\sin \theta}{\cos \theta}$$

$$\sin^2 \theta + \cos^2 \theta = 1$$

$$\sin^2 \theta = 1 - \cos^2 \theta$$

$$\cos^2 \theta = 1 \sin^2 \theta$$

$$\sin \theta = \frac{opp}{hyp}$$

$$\cos \theta = \frac{adj}{hyp}$$

$$\tan \theta = \frac{opp}{adj}$$

More Identities

$$Sin (A \pm B) = Sin A Cos B \pm Sin B Cos A$$

$$Cos(A \pm B) = Cos A Cos B \mp Sin A Sin B$$

Tan (A
$$\pm B$$
) = $\frac{Tan A \pm Tan B}{1 \mp Tan A Tan B}$

Even More Identities

$$\sin 2A = 2 \sin A \cos A$$

$$Cos 2A = Cos2 A - Sin2 A$$
$$= 1 - 2Sin2 A$$
$$= 2Cos2 A - 1$$

$$Tan 2A = \frac{2 Tan A}{1 - Tan^2 A}$$

NB

- When proving identities, it is sometimes helpful to expand and simplify both sides until they are equivalent
- When proving identities with cos 2A, remember to choose the identity based on if you need cosA *only* or sinA *only*.
- When solving trig. functions, pay attention to range in which the unknown angle lies.
- Learn these exact values:

$$\cos(0) = \sin(90) = 1$$

$$\cos (0) = \sin (90) = 1 \qquad \cos (30) = \sin (60) = \frac{\sqrt{3}}{2}$$

$$\cos (60) = \sin (30) = \frac{1}{2} \qquad \cos (45) = \sin (45) = \frac{\sqrt{2}}{2}$$

$$\cos(60) = \sin(30) = \frac{1}{5}$$

$$\cos(45) = \sin(45) = \frac{\sqrt{2}}{2}$$

$$\tan(30) = \frac{1}{\sqrt{3}}$$

$$\tan (45) = 1$$

$$\tan(60) = \sqrt{3}$$

Section 3: Introductory Calculus A. Differentiation

How to differentiate?

$$y = ax^n$$

$$\frac{dy}{dx} = nax^{n-1}$$

$$y = ax$$

$$\frac{dy}{dx} = a$$

$$y = a$$

$$\frac{dy}{dx} = 0$$

$$\frac{dy}{dx} = n(a)(ax + b)^{n-1}$$

$$y = \cos x$$

$$\frac{dy}{dx} = -\sin x$$

$$y = \sin x$$

$$\frac{dy}{dx} = \cos x$$

$$y = \cos(ax+b)$$

$$y = \cos(ax+b)$$

$$\frac{dy}{dx} = -a \sin(ax+b)$$

$$y = \sin(ax+b)$$

$$\frac{dy}{dx}$$
 = a cos (ax +b)

Product rule:

y = u.v then
$$\frac{dy}{dx} = u.\frac{dv}{dx} + v.\frac{du}{dx}$$

Quotient rule:

$$y = \frac{u}{v}$$

$$y = \frac{u}{v}$$
 then $\frac{dy}{dx} = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2}$

Chain Rule:
$$\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx}$$

$$\frac{d^2y}{dx^2} = \frac{d(\frac{dy}{dx})}{dx}$$

Applications of differentiation

To find the gradient:

$$\frac{dy}{dx} = gradient function$$

At any point on a function substitute the x-valve into the gradient function to obtain the gradient of the tangent at that point.

Displacement- time graph

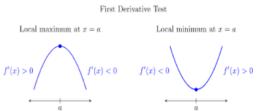
- gradient = velocity
- horizontal line = stationary
- negative gradient = change in direction

Velocity- time graph

- gradient = acceleration
- horizontal line = no acceleration
- area under graph = distance covered
- negative gradient= retardation

To determine the nature of stationary points:

When $\frac{dy}{dx} = 0$, then stationary point exists. If:



Also

$$\frac{d^2y}{dx^2} > 0 \text{ then point is minimum}$$

And

$$\frac{d^2y}{dx^2} < 0$$
 then point is maximum

Rates of change:

Rate of change of
$$x = \frac{dx}{dt} = \frac{dx}{dy} \times \frac{dy}{dt}$$

Rate of change Area,
$$\frac{dA}{dt} = \frac{dA}{dr} \times \frac{dr}{dt}$$

Rate of change Volume,
$$\frac{dV}{dt} = \frac{dV}{dr} \times \frac{dr}{dt}$$

Rate of change of
$$y = \frac{dy}{dt} = \frac{dy}{dx} \times \frac{dx}{dt}$$

Kinematics:

Rate of change of displacement = velocity

Velocity,
$$v = \frac{ds}{dt}$$

Rate of change of velocity = acceleration Acceleration, $a = \frac{dv}{dt} = \frac{d^2s}{dt^2}$

B. Integration

How to integrate?

1. Add 1 to the power

1. Add 1 to the power

2. Divide by the new power

3. Divide by the differential of bracket

•
$$\int_a^b f(x). dx = {}_a^b [F(x)] = F[b] - F[a]$$

•
$$\int \cos(ax+b). dx = \frac{1}{a}\sin(ax+b) + c.$$

1.
$$\frac{1}{differential\ of\ (ax+b)}$$

2. Integral of
$$cos = sin$$

3. Combine step 1 and 2 and put back (ax + b).

•
$$\int \sin(ax+b). dx = -\frac{1}{a}\cos(ax+b) + c$$

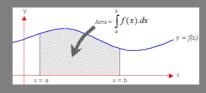
Applications of Integration

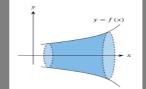
1. To formulate the equation of a curve given its gradient function.

$$\int \frac{dy}{dx} \cdot dx = y$$

2. Area under the curve:

3. Volume of revolution about the x-axis:

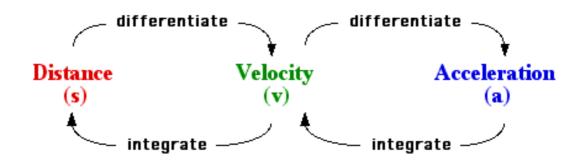




Area =
$$\int_{a}^{b} f(x)$$

Volume = $\pi \int_a^b y^2 \cdot dx$

Kinematics



- $\bigcirc \quad \text{Average velocity} = \frac{change \ in \ displacement}{time \ taken}$
- $\bigcirc \quad \text{Average speed} = \frac{total\ distance\ travelled}{time\ taken}$
- o A particle is instantaneously at **rest** when its **velocity is zero**.
- o A particle reaches maximum velocity when its acceleration is zero.

Section 4: Probability and Statistics

A. Data representation and Analysis

Types of data:

Quantitative data: numerical data. e.g., Age

Qualitative data: non-numerical data, e.g. Gender.

Discrete data: takes the form of whole number values only.

Continuous data: can take any value within a particular range.

Quartiles:

Lower Quartile, $Q_1 = \frac{1}{4} (n+1)^{th} term$

Interquartile Range = $Q_3 - Q_1$

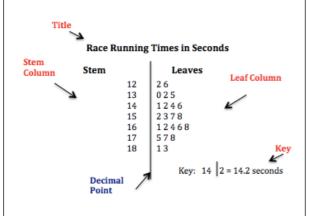
Median, $Q_2 = \frac{1}{2} (n+1)^{th} term$

Semi-Interquartile Range = $\frac{Q_3 - Q_1}{2}$

Upper Quartile, $Q_3 = \frac{3}{4} (n+1)^{th} term$

Stem and Leaf diagram

- -All intervals must have equal widths
- Must have a key
- -All the raw data is available

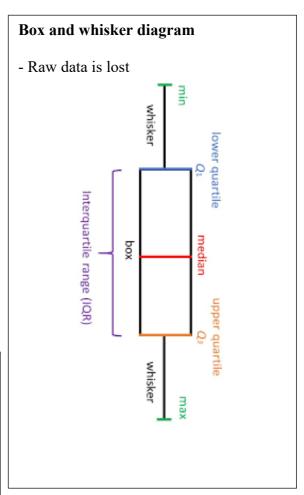


For grouped data:

Mean,
$$\mu = \frac{\sum f(x)}{\sum f}$$

Variance,
$$\sigma^2 = \frac{\sum f x^2}{\sum f} - \mu^2$$

Standard deviation, $\sigma = \sqrt{variance}$



B. Probability Theory

Classical Probability:

Probability of event A occurring = $P(A) = \frac{n(A)}{n(S)} = \frac{no\ of\ outcomes\ in\ event\ A}{total\ number\ of\ possible\ outcomes}$

Basic Laws of Probability:

- Sum of the probabilities of all the outcomes in a sample space is equal to one. $\sum p = 1$.
- o For any event A; $0 \le P(A) \le 1$.
- o $P(A) + P(\bar{A}) = 1$, where $P(\bar{A})$ is the probability of A not occurring

For Two Events:

- $P(A \text{ or } B) = P(A \cup B) = P(A) + P(B) P(A \cap B)$
- o If $P(A \cap B) = 0$ then events A and B are said to be mutually exclusive.
- o For Conditional probability, A given B,

$$P(A/B) = \frac{P(A \cap B)}{P(B)}$$

- If A does not depend on B then A and B are said to be independent and $P(A \cap B) = P(A).P(B)$
- Probability tree diagram :

$$P(A \cap B) = P(A).P(B/A)$$

$$P(B) = P(A).P(B/A) + P(\bar{A}).P(B/\bar{A})$$

