1. (a) (i) Let p and q be any two propositions. Complete the truth table below.

p	q	$p \longrightarrow q$	$q \longrightarrow p$	$(p \longrightarrow q) \land (q \longrightarrow p)$
T	Т			
Т	F	Barrier III		
F	Т			
F	F			

[3 marks]

(ii)	Hence, state whether the statements q-	\rightarrow p and (p -	→ q) ∧ (q -	→ p) are logically
	equivalent. Justify your response.			

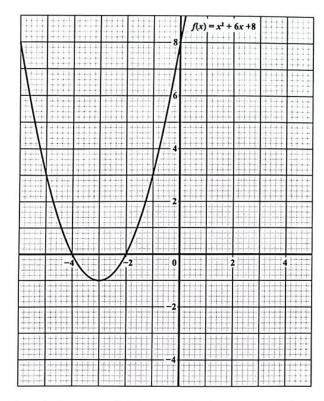
marks

- (b) Let x and y be negative real numbers and let z be any real number. Use a counter example to show that the statement "if x > y then xz > yz" is false.
- (c) The expression $f(x) = 6x^3 + px^2 + qx + 2$ is divisible by 2x 1 and has a remainder of 2 when divided by x 1.

Calculate the values of p and q.

- (d) (i) Solve the logarithmic equation $\log_3 (x^2 9) \log_3 (x + 3) = 3$.
- (ii) Show that $\sqrt{320x^3} + \sqrt{125x^3}$ simplifies to $13x\sqrt{5x}$.
- 2. (a) Let f(x) = 7x + 2. Prove that f is bijective.
- (b) The roots of the cubic equation $3x^3 x^2 2x + 1 = 0$ are α , β and γ . Determine the equation whose roots are $\frac{1}{\alpha}$, $\frac{1}{\beta}$ and $\frac{1}{\gamma}$.

(c) The diagram below shows the graph of the curve $f(x) = x^2 + 6x + 8$.



- (i) On the axes provided above, sketch and label the graph of $g(x) = |x^2 + 6x + 8|$. [3 marks]
- (ii) On the same axes, sketch and label the inverse of f for $x \ge -3$. [5 marks]
- (d) Given that $g(x) = \frac{2x+3}{x+3}$, prove that $g^{-1}(2)$ does not exist.

2022

(c)

(a) (i) Let p and q be any two propositions. Complete the truth table below.

р	q	~q	(~q ∧ p)	$p \lor (\sim q \land p)$
T	Т			
Т	F			
F	Т			
F	F			

[3 marks]

(ii) Hence, state whether the statements (~q ∧ p) and p ∨ (~q ∧ p) are logically equivalent. Justify your response.

[2 marks]

(b) Determine the values of a, b, and c, such that $2x^2 - 7x + 12 = a(x-2)(x-1) - b(x-3) + c.$

Solve the inequality $|3x + 2| \ge 4$.

(d) Solve the logarithmic equation $\log_5 (x+2) + \log_5 (x+6) = 1$.

(a) Let $f(x) = \frac{3x+1}{x}$ and $g(x) = e^{-2x} + 1$.

(i) Show that $f^{-1}(x) = \frac{1}{x-3}$.

(ii) Hence, or otherwise, write an expression for $(f^{-1} \circ g)(x)$.

(b) Solve the equation $6 - \frac{7}{2^{2x}} - \frac{3}{4^{2x}} = 0$.

The function $f(x) = 2x^3 - px^2 + qx - 10$ is divisible by x - 1 and has a remainder of -6 when divided by x + 1.

Calculate the values of p and q.

(d) The roots of the equation $2x^3 - x^2 + 3x - 1 = 0$ are α , β , and γ .

Given that $\alpha\beta + \alpha\gamma + \beta\gamma = \frac{3}{2}$ and $\frac{1}{\alpha\beta} + \frac{1}{\beta\gamma} + \frac{1}{\alpha\gamma} = \frac{\alpha + \beta + \gamma}{\alpha\beta\gamma}$, determine the equation whose roots are $\frac{1}{\alpha}$, $\frac{1}{\beta}$ and $\frac{1}{\gamma}$.

1. (a) (i) Let \mathbf{p} and \mathbf{q} be any two propositions. Complete the truth table below.

p	q	~p	~q	$\mathbf{p} \vee \mathbf{q}$	~(p ∨ q)	~p ∨ ~q
T	Т					
Т	F					
F	Т					
F	F					

[4 marks]

(ii) Hence, state whether the statements \sim ($p \vee q$) and \sim $p \vee \sim$ q are logically equivalent. Justify your response.

[2 marks

(b) (i) Write the converse of the statement "n is an integer $\Rightarrow n^2$ is an integer".

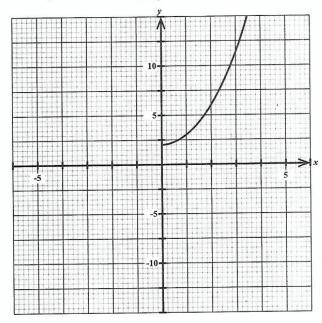
[1 mark]

- (ii) For two real numbers x and y, the operation * is given by $x * y = x^2 + y^2$. Prove that * is closed in **R**.
- (iii) Determine whether the operation * is commutative.
- (c) The function $f(x) = ax^3 + 3x^2 b$ is divisible by 2x 1 and has a remainder of -5 when divided by x + 2.

Calculate the values of a and b.

(d) Solve the logarithmic equation $\log_2 x + \log_4 x + \log_{16} x = 7$.

2. (a) The diagram below shows the graph of $f(x) = x^2 + 2$ for $x \ge 0$.



- (i) On the graph
 - a) Sketch the inverse of f
 - b) Show that the inverse of f is a function.

[4 marks]

- (ii) Prove that f is one to one.
- (iii) Determine whether f is onto.
- (b) Solve the equation $|x^2 4| = 3x 2$.

(c) Given that α , β , and γ are the roots of the equation $2x^3 - x^2 + 3x - 1 = 0$, determine the equation whose roots are $\frac{1}{\alpha}$, $\frac{1}{\beta}$, $\frac{1}{\gamma}$.

2019

- 1. (a) The quadratic expression $f(x) = ax^2 + 12x + b$ is divisible by x 3 and has a remainder -27 when divided by x + 6.
 - (i) Show that the values of the constants a and b are 3 and -63, respectively.
- (ii) Hence, determine the factors of f.
- (b) Solve, for real values of x, the inequality $|3x 4| \le 6$.
- (c) A binary operation is defined on the set of rational numbers by $a * b = \frac{ab}{2}$. Prove that * is commutative.
- (d) Use mathematical induction to prove that $5^n 1$ is divisible by 4 for $n \in \mathbb{N}$.
- (a) Let A = {x : x ∈ R, x ≥ 1}.
 A function f: A → R is defined as f(x) = x² x. Show that f is one-to-one.

Let
$$f(x) = 3x + 1$$
 and $g(x) = e^{3x}$.

(i) Determine f^{-1} .

(ii) Determine $f^{-1} \circ g$.

(c) Solve the equation
$$3 - \frac{4}{9^x} - \frac{4}{81^x} = 0$$
.

- (d) Let the roots of the equation $2x^3 5x^2 + 4x + 6 = 0$ be α , β and γ .
 - (i) State the values of $\alpha + \beta + \gamma$, $\alpha\beta + \alpha\gamma + \beta\gamma$ and $\alpha\beta\gamma$.
- (ii) Hence, or otherwise, determine the equation with roots α^2 , β^2 and γ^2 .

Note:
$$(\alpha\beta)^2 + (\alpha\gamma)^2 + (\beta\gamma)^2 = (\alpha\beta + \alpha\gamma + \beta\gamma)^2 - 2\alpha\beta\gamma(\alpha + \beta + \gamma)$$

 $\alpha^2 + \beta^2 + \gamma^2 = (\alpha + \beta + \gamma)^2 - 2(\alpha\beta + \alpha\gamma + \beta\gamma)$

2024

- (a) Given that $f(x) = \frac{4}{x-5}$ and $g(x) = \frac{1}{x}$, determine the domain of the composite function f(g(x)).
- (b) Solve the inequality $-3|2x-5|+2 \ge -4$.
- (c) Solve the logarithmic equation $\log_5 x 4 \log_x 5 = -3$.
- (d) Prove that the function f(x) = 3x 2 is bijective.
 - (a) The roots of the cubic equation $x^3 9 = 0$ are α , β and γ . Determine the with roots $(\alpha 1)$, $(\beta 1)$ and $(\gamma 1)$, given that $(\alpha 1)(\beta 1) + (\alpha 1)(\gamma 1) + (\beta 1)(\gamma 1) = 12$.
- (b) The function $f(x) = 2x^3 px^2 + qx 5$ is divisible by 2x 1 and has a remainder of 7 w divided by x 1. Calculate the values of p and q.
- (c) Let P be the proposition that if $n^3 + 3$ is odd then n is even for all integers n. Provide a proof by contradiction for this proposition.

Hint: Let $n^3 + 3$ be odd and assume that n is odd. Show that the assumption that n is odd is incorrect.

Logic and Reasoning

If we have the conditional statement, $\sim \mathbf{p} \rightarrow \mathbf{q}$ then:

- Converse:
- Inverse:
- Contrapositive:

Prove
$$(\mathbf{p} \lor \mathbf{q}) \land \sim \mathbf{p} \equiv \sim \mathbf{p} \land \mathbf{q}$$
.

Prove
$$\sim (\mathbf{p} \land \sim \mathbf{q}) \equiv \sim \mathbf{p} \lor \mathbf{q}$$
.

Prove
$$\sim (\mathbf{p} \land \sim \mathbf{q}) \land (\sim \mathbf{p} \lor \sim \mathbf{q}) \equiv \sim \mathbf{p}$$
.

PMI

Using P.M.I. show that P_n : $6^n - 1$ is divisible by 5, $\forall n \in \mathbb{N}$.

Using P.M.I. show that $3^{4n} - 1$ is divisible by 16, $\forall n \ge 1$.

Using P.M.I. show that $\sum_{r=1}^{n} r = \frac{1}{2}(n)(n+1)$, $\forall n \geq 1$.

Using P.M.I. show that $\sum_{r=1}^{n} (4r-3) = n(2n-1)$, $\forall n \in \mathbb{N}$.

Using P.M.I. show that $\sum_{r=1}^{n} \frac{1}{r(r+1)} = \frac{n}{n+1}$, $\forall n \in \mathbb{N}$.

Past Paper Question - 2017 Paper 2

Use mathematical induction to prove that,

$$\frac{1}{1.2} + \frac{1}{2.3} + \frac{1}{3.4} + \dots + \frac{1}{n.(n+1)} = \frac{n}{n+1} \quad \text{for } n \in \mathbb{N}.$$

Surds

Simplify
$$\frac{\sqrt{3} + \sqrt{2}}{\sqrt{3} - \sqrt{2}}$$

Simplify

$$\frac{3\sqrt{5} + 2\sqrt{3}}{2\sqrt{5} - 4\sqrt{3}}$$

Past Paper Question – 2008 Paper 2 ROR #1 b) (ii) Without using calculators or tables, evaluate

$$\frac{\sqrt{6} + \sqrt{2}}{\sqrt{6} - \sqrt{2}} + \frac{\sqrt{6} - \sqrt{2}}{\sqrt{6} + \sqrt{2}}$$

Past Paper Question – 2005 Paper 2 #3 a) Show

$$\sqrt{11} + \sqrt{7} = \frac{4}{\sqrt{11} - \sqrt{7}}$$

Past Paper Question - 2004 Paper 2 #3

(i) Show $\frac{4}{2^x} = 2^{2-x}$

(ii) Solve
$$2^x + 2^{2-x} = 5$$

Past Paper Question – 2008 Paper 2 TT #2 a) Without using calculators or tables, evaluate,

$$\sqrt{\frac{27^{10} + 9^{10}}{27^4 + 9^{11}}}$$

Logs

Past Paper Question – 2009 Paper 2 #1 c)

Solve the equation $\log_4 x = 1 + \log_2 2x$, x > 0.

Past Paper Question – 2012 Paper 2 #2 c)

Without the use of calculators or tables, evaluate

(i)
$$\log_{10}\left(\frac{1}{3}\right) + \log_{10}\left(\frac{3}{5}\right) + \log_{10}\left(\frac{5}{7}\right) + \log_{10}\left(\frac{7}{9}\right) + \log_{10}\left(\frac{9}{10}\right)$$
.

(ii)
$$\sum_{r=1}^{99} \log_{10} \left(\frac{r}{r+1} \right).$$

(ii)
$$\sum_{r=1}^{99} \log_{10} \left(\frac{r}{r+1} \right)$$
.

Past Paper Question – 2014 Paper 2 #2 b)

Given that $a^3 + b^3 + 3a^2b = 5ab^2$, show that $3 \log \left(\frac{a+b}{2}\right) = \log a + 2 \log b$.